2015년 2월 24일 화요일

Computing for Better Radiation Therapy

02/19/2015 06:40 PM EST
chamber and computer simulation
A photograph of the free-air chamber used for the physical measurements (left) and the corresponding model used in the computational simulations (right).
Doctors devising a plan of attack on a tumor may one day gain another tactical advantage thanks to a series of sophisticated calculations proposed by PML’s Dosimetry group. Their results could serve as a foundation for the next generation of software used by clinicians, to design courses of radiation treatment for electronic brachytherapy patients.
Electronic brachytherapy is a relatively new but promising cancer treatment similar to conventional brachytherapy, in which radioactive seeds are placed in or near a patient to fight a tumor. In this case, however, the source of radiation is a miniature x-ray tube just a few millimeters in size. Since the tubes use a voltage instead of a radioactive source, they can be turned on and off as needed, allowing clinicians to minimize dose to patients and medical staff.
Currently, doctors use software to decide the best placement for an x-ray tube in a way that maximizes dose to the tumor and minimizes it elsewhere. This software makes several simplified assumptions about radiation dose to the body. For example, traditional brachytherapy dosimetry protocols do not account for the effects of iodine contrast or for the differences in how the radiation interacts with soft tissue and bone. For electronic brachytherapy, these issues can sometimes be significant, resulting in possible discrepancies between the planned dose and the dose that is actually delivered to a patient.
Read more ...

댓글 없음:

댓글 쓰기